Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
FEBS J ; 290(8): 2011-2021, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36478072

RESUMO

Understanding the molecular features of catalytically active DNA sequences, so-called DNAzymes, is essential not only for our understanding of the fundamental properties of catalytic nucleic acids in general, but may well be the key to unravelling their full potential via tailored modifications. Our recent findings contributed to the endeavour to assemble a mechanistic picture of DNA-mediated catalysis by providing high-resolution structural insights into the 10-23 DNAzyme (Dz) and exposing a complex interplay between the Dz's unique molecular architecture, conformational plasticity, and dynamic modulation by metal ions as central elements of the DNA catalyst. Here, we discuss key features of our findings and compare them to other studies on similar systems.


Assuntos
DNA Catalítico , DNA Catalítico/genética , DNA Catalítico/química , DNA Catalítico/metabolismo , DNA/genética , DNA/química , Metais/química , Sequência de Bases , Catálise
2.
Sci Rep ; 12(1): 14158, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986043

RESUMO

Acute myeloid leukemia (AML) is a malignant disease of immature myeloid cells and the most prevalent acute leukemia among adults. The oncogenic homo-tetrameric fusion protein RUNX1/ETO results from the chromosomal translocation t(8;21) and is found in AML patients. The nervy homology region 2 (NHR2) domain of ETO mediates tetramerization; this oligomerization is essential for oncogenic activity. Previously, we identified the first-in-class small-molecule inhibitor of NHR2 tetramer formation, 7.44, which was shown to specifically interfere with NHR2, restore gene expression down-regulated by RUNX1/ETO, inhibit the proliferation of RUNX1/ETO-depending SKNO-1 cells, and reduce the RUNX1/ETO-related tumor growth in a mouse model. However, no biophysical and structural characterization of 7.44 binding to the NHR2 domain has been reported. Likewise, the compound has not been characterized as to physicochemical, pharmacokinetic, and toxicological properties. Here, we characterize the interaction between the NHR2 domain of RUNX1/ETO and 7.44 by biophysical assays and show that 7.44 interferes with NHR2 tetramer stability and leads to an increase in the dimer population of NHR2. The affinity of 7.44 with respect to binding to NHR2 is Klig = 3.75 ± 1.22 µM. By NMR spectroscopy combined with molecular dynamics simulations, we show that 7.44 binds with both heteroaromatic moieties to NHR2 and interacts with or leads to conformational changes in the N-termini of the NHR2 tetramer. Finally, we demonstrate that 7.44 has favorable physicochemical, pharmacokinetic, and toxicological properties. Together with biochemical, cellular, and in vivo assessments, the results reveal 7.44 as a lead for further optimization towards targeted therapy of t(8;21) AML.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia Mieloide Aguda , Animais , Cromossomos Humanos Par 21 , Cromossomos Humanos Par 8/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Proteínas de Fusão Oncogênica/metabolismo , Translocação Genética
3.
Nature ; 601(7891): 144-149, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34949858

RESUMO

The 10-23 DNAzyme is one of the most prominent catalytically active DNA sequences1,2. Its ability to cleave a wide range of RNA targets with high selectivity entails a substantial therapeutic and biotechnological potential2. However, the high expectations have not yet been met, a fact that coincides with the lack of high-resolution and time-resolved information about its mode of action3. Here we provide high-resolution NMR characterization of all apparent states of the prototypic 10-23 DNAzyme and present a comprehensive survey of the kinetics and dynamics of its catalytic function. The determined structure and identified metal-ion-binding sites of the precatalytic DNAzyme-RNA complex reveal that the basis of the DNA-mediated catalysis is an interplay among three factors: an unexpected, yet exciting molecular architecture; distinct conformational plasticity; and dynamic modulation by metal ions. We further identify previously hidden rate-limiting transient intermediate states in the DNA-mediated catalytic process via real-time NMR measurements. Using a rationally selected single-atom replacement, we could considerably enhance the performance of the DNAzyme, demonstrating that the acquired knowledge of the molecular structure, its plasticity and the occurrence of long-lived intermediate states constitutes a valuable starting point for the rational design of next-generation DNAzymes.


Assuntos
Biocatálise , DNA Catalítico/química , DNA Catalítico/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , RNA/metabolismo , Cinética , Metais/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fatores de Tempo
4.
J Biol Chem ; 296: 100552, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33744293

RESUMO

The Cellulosome is an intricate macromolecular protein complex that centralizes the cellulolytic efforts of many anaerobic microorganisms through the promotion of enzyme synergy and protein stability. The assembly of numerous carbohydrate processing enzymes into a macromolecular multiprotein structure results from the interaction of enzyme-borne dockerin modules with repeated cohesin modules present in noncatalytic scaffold proteins, termed scaffoldins. Cohesin-dockerin (Coh-Doc) modules are typically classified into different types, depending on structural conformation and cellulosome role. Thus, type I Coh-Doc complexes are usually responsible for enzyme integration into the cellulosome, while type II Coh-Doc complexes tether the cellulosome to the bacterial wall. In contrast to other known cellulosomes, cohesin types from Bacteroides cellulosolvens, a cellulosome-producing bacterium capable of utilizing cellulose and cellobiose as carbon sources, are reversed for all scaffoldins, i.e., the type II cohesins are located on the enzyme-integrating primary scaffoldin, whereas the type I cohesins are located on the anchoring scaffoldins. It has been previously shown that type I B. cellulosolvens interactions possess a dual-binding mode that adds flexibility to scaffoldin assembly. Herein, we report the structural mechanism of enzyme recruitment into B. cellulosolvens cellulosome and the identification of the molecular determinants of its type II cohesin-dockerin interactions. The results indicate that, unlike other type II complexes, these possess a dual-binding mode of interaction, akin to type I complexes. Therefore, the plasticity of dual-binding mode interactions seems to play a pivotal role in the assembly of B. cellulosolvens cellulosome, which is consistent with its unmatched complexity and size.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroides/metabolismo , Proteínas de Ciclo Celular/metabolismo , Celulossomas/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Clostridiales/metabolismo , Proteínas de Bactérias/genética , Bacteroides/genética , Bacteroides/crescimento & desenvolvimento , Proteínas de Ciclo Celular/genética , Celobiose/metabolismo , Celulose/metabolismo , Proteínas Cromossômicas não Histona/genética , Clostridiales/genética , Clostridiales/crescimento & desenvolvimento
5.
Angew Chem Int Ed Engl ; 60(25): 13783-13787, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33768661

RESUMO

Therapeutically relevant proteins such as GPCRs, antibodies and kinases face clear limitations in NMR studies due to the challenges in site-specific isotope labeling and deuteration in eukaryotic expression systems. Here we describe an efficient and simple method to observe the methyl groups of leucine residues in proteins expressed in bacterial, eukaryotic or cell-free expression systems without modification of the expression protocol. The method relies on simple stereo-selective 13 C-labeling and deuteration of leucine that alleviates the need for additional deuteration of the protein. The spectroscopic benefits of "local" deuteration are examined in detail through Forbidden Coherence Transfer (FCT) experiments and simulations. The utility of this labeling method is demonstrated in the cell-free synthesis of bacteriorhodopsin and in the insect-cell expression of the RRM2 domain of human RBM39.


Assuntos
Eucariotos/química , Ressonância Magnética Nuclear Biomolecular , Receptores Acoplados a Proteínas G/química , Humanos , Estrutura Molecular
6.
Sci Rep ; 10(1): 3578, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32107397

RESUMO

Folding and cellular localization of many proteins of Gram-negative bacteria rely on a network of chaperones and secretion systems. Among them is the lipase-specific foldase Lif, a membrane-bound steric chaperone that tightly binds (KD = 29 nM) and mediates folding of the lipase LipA, a virulence factor of the pathogenic bacterium P. aeruginosa. Lif consists of five-domains, including a mini domain MD1 essential for LipA folding. However, the molecular mechanism of Lif-assisted LipA folding remains elusive. Here, we show in in vitro experiments using a soluble form of Lif (sLif) that isolated MD1 inhibits sLif-assisted LipA activation. Furthermore, the ability to activate LipA is lost in the variant sLifY99A, in which the evolutionary conserved amino acid Y99 from helix α1 of MD1 is mutated to alanine. This coincides with an approximately three-fold reduced affinity of the variant to LipA together with increased flexibility of sLifY99A in the complex as determined by polarization-resolved fluorescence spectroscopy. We have solved the NMR solution structures of P. aeruginosa MD1 and variant MD1Y99A revealing a similar fold indicating that a structural modification is likely not the reason for the impaired activity of variant sLifY99A. Molecular dynamics simulations of the sLif:LipA complex in connection with rigidity analyses suggest a long-range network of interactions spanning from Y99 of sLif to the active site of LipA, which might be essential for LipA activation. These findings provide important details about the putative mechanism for LipA activation and point to a general mechanism of protein folding by multi-domain steric chaperones.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Lipase/química , Lipase/metabolismo , Pseudomonas aeruginosa/enzimologia , Proteínas de Bactérias/genética , Cinética , Lipase/genética , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética
7.
Structure ; 28(1): 54-62.e5, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31780432

RESUMO

Epidermal growth factor receptors (EGFRs) are central cellular signaling interfaces whose misregulation is related to several severe diseases. Although ligand binding to the extracellular domain is the most obvious regulatory element, also intracellular factors can act as modulators of EGFR activity. The juxtamembrane (JM) segment seems to be the receptor's key interaction interface of these cytoplasmic factors. However, only a limited number of cytoplasmic EGFR modulators are known and a comprehensive understanding of their mode of action is lacking. Here, we report ARNO, a member of the cytohesin family, as another JM-binding protein and structurally characterize the ARNO-EGFR interaction interface. We reveal that its binding mode displays common features and distinct differences with JM's interaction with calmodulin and anionic phospholipids. Furthermore, we show that each interaction can be modulated by additional factors, generating a distinctly regulated network of possible EGFR modulators acting on the intracellular domain of the receptor.


Assuntos
Calmodulina/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Fosfolipídeos/metabolismo , Sítios de Ligação , Citoplasma/metabolismo , Receptores ErbB/química , Receptores ErbB/metabolismo , Proteínas Ativadoras de GTPase/química , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica
8.
FEBS J ; 287(13): 2723-2743, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31794092

RESUMO

Understanding the specific molecular interactions between proteins and ß1,3-1,4-mixed-linked d-glucans is fundamental to harvest the full biological and biotechnological potential of these carbohydrates and of proteins that specifically recognize them. The family 11 carbohydrate-binding module from Clostridium thermocellum (CtCBM11) is known for its binding preference for ß1,3-1,4-mixed-linked over ß1,4-linked glucans. Despite the growing industrial interest of this protein for the biotransformation of lignocellulosic biomass, the molecular determinants of its ligand specificity are not well defined. In this report, a combined approach of methodologies was used to unravel, at a molecular level, the ligand recognition of CtCBM11. The analysis of the interaction by carbohydrate microarrays and NMR and the crystal structures of CtCBM11 bound to ß1,3-1,4-linked glucose oligosaccharides showed that both the chain length and the position of the ß1,3-linkage are important for recognition, and identified the tetrasaccharide Glcß1,4Glcß1,4Glcß1,3Glc sequence as a minimum epitope required for binding. The structural data, along with site-directed mutagenesis and ITC studies, demonstrated the specificity of CtCBM11 for the twisted conformation of ß1,3-1,4-mixed-linked glucans. This is mediated by a conformation-selection mechanism of the ligand in the binding cleft through CH-π stacking and a hydrogen bonding network, which is dependent not only on ligand chain length, but also on the presence of a ß1,3-linkage at the reducing end and at specific positions along the ß1,4-linked glucan chain. The understanding of the detailed mechanism by which CtCBM11 can distinguish between linear and mixed-linked ß-glucans strengthens its exploitation for the design of new biomolecules with improved capabilities and applications in health and agriculture. DATABASE: Structural data are available in the Protein Data Bank under the accession codes 6R3M and 6R31.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridium thermocellum/metabolismo , Glucanos/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , Glucanos/química , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Homologia de Sequência , Especificidade por Substrato
9.
Front Mol Biosci ; 6: 13, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30931313

RESUMO

Barttin is an accessory subunit of ClC-K chloride channels expressed in the kidney and the inner ear. Main functions of ClC-K/barttin channels are the generation of the cortico-medullary osmotic gradients in the kidney and the endocochlear potential in the inner ear. Mutations in the gene encoding barttin, BSND, result in impaired urinary concentration and sensory deafness. Barttin is predicted to be a two helical integral membrane protein that directly interacts with its ion channel in the membrane bilayer where it stabilizes the channel complex, promotes its incorporation into the surface membrane and leads to channel activation. It therefore is an attractive target to address fundamental questions of intermolecular communication within the membrane. However, so far inherent challenges in protein expression and stabilization prevented comprehensive in vitro studies and structural characterization. Here we demonstrate that cell-free expression enables production of sufficient quantities of an isotope-labeled barttin variant (I72X Barttin, capable to promote surface membrane insertion and channel activation) for NMR-based structural studies. Additionally, we established purification protocols as well as reconstitution strategies in detergent micelles and phospholipid bilayer nanodiscs. Stability, folding, and NMR data quality are reported as well as a suitable assignment strategy, paving the way to its structural characterization.

10.
Sci Rep ; 6: 38292, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27924829

RESUMO

During the course of evolution, the cellulosome, one of Nature's most intricate multi-enzyme complexes, has been continuously fine-tuned to efficiently deconstruct recalcitrant carbohydrates. To facilitate the uptake of released sugars, anaerobic bacteria use highly ordered protein-protein interactions to recruit these nanomachines to the cell surface. Dockerin modules located within a non-catalytic macromolecular scaffold, whose primary role is to assemble cellulosomal enzymatic subunits, bind cohesin modules of cell envelope proteins, thereby anchoring the cellulosome onto the bacterial cell. Here we have elucidated the unique molecular mechanisms used by anaerobic bacteria for cellulosome cellular attachment. The structure and biochemical analysis of five cohesin-dockerin complexes revealed that cell surface dockerins contain two cohesin-binding interfaces, which can present different or identical specificities. In contrast to the current static model, we propose that dockerins utilize multivalent modes of cohesin recognition to recruit cellulosomes to the cell surface, a mechanism that maximises substrate access while facilitating complex assembly.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ciclo Celular/química , Celulossomas/química , Proteínas Cromossômicas não Histona/química , Clostridiales/química , Clostridium thermocellum/química , Proteínas de Membrana/química , Complexos Multienzimáticos/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Celulossomas/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Clonagem Molecular , Clostridiales/metabolismo , Clostridium thermocellum/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutação , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica
11.
Biol Chem ; 397(12): 1335-1354, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27451995

RESUMO

The choice of a suitable membrane mimicking environment is of fundamental importance for the characterization of structure and function of membrane proteins. In this respect, usage of the lipid bilayer nanodisc technology provides a unique potential for nuclear magnetic resonance (NMR)-based studies. This review summarizes the recent advances in this field, focusing on (i) the strengths of the system, (ii) the bottlenecks that may be faced, and (iii) promising capabilities that may be explored in future studies.


Assuntos
Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética/métodos , Nanoestruturas/química , Nanotecnologia/métodos , Animais , Humanos , Bicamadas Lipídicas/metabolismo
12.
Angew Chem Int Ed Engl ; 55(36): 10746-50, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27351143

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy has the intrinsic capabilities to investigate proteins in native environments. In general, however, NMR relies on non-natural protein purity and concentration to increase the desired signal over the background. We here report on the efficient and specific hyperpolarization of low amounts of a target protein in a large isotope-labeled background by combining dynamic nuclear polarization (DNP) and the selectivity of protein interactions. Using a biradical-labeled ligand, we were able to direct the hyperpolarization to the protein of interest, maintaining comparable signal enhancement with about 400-fold less radicals than conventionally used. We could selectively filter out our target protein directly from crude cell lysate obtained from only 8 mL of fully isotope-enriched cell culture. Our approach offers effective means to study proteins with atomic resolution in increasingly native concentrations and environments.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Isótopos de Carbono/química , Óxidos N-Cíclicos/química , Marcação por Isótopo , Polietilenoglicóis/química , Propanóis/química , Estrutura Secundária de Proteína , Proteínas/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína bcl-X/química , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
13.
J Biomol NMR ; 64(1): 9-15, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26728075

RESUMO

A growing number of nuclear magnetic resonance (NMR) spectroscopic studies are impaired by the limited information content provided by the standard set of experiments conventionally recorded. This is particularly true for studies of challenging biological systems including large, unstructured, membrane-embedded and/or paramagnetic proteins. Here we introduce the concept of unified time-optimized interleaved acquisition NMR (UTOPIA-NMR) for the unified acquisition of standard high-γ (e.g. (1)H) and low-γ (e.g. (13)C) detected experiments using a single receiver. Our aim is to activate the high level of polarization and information content distributed on low-γ nuclei without disturbing conventional magnetization transfer pathways. We show that using UTOPIA-NMR we are able to recover nearly all of the normally non-used magnetization without disturbing the standard experiments. In other words, additional spectra, that can significantly increase the NMR insights, are obtained for free. While we anticipate a broad range of possible applications we demonstrate for the soluble protein Bcl-xL (ca. 21 kDa) and for OmpX in nanodiscs (ca. 160 kDa) that UTOPIA-NMR is particularly useful for challenging protein systems including perdeuterated (membrane) proteins.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas de Membrana/química
14.
J Membr Biol ; 247(9-10): 957-64, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24858950

RESUMO

While amphipols have been proven useful for refolding of seven transmembrane helical (7-TM) proteins including G-protein-coupled receptors (GPCRs) and it could be shown that an amphipol environment is in principle suitable for NMR structural studies of the embedded protein, high-resolution NMR insights into amphipol refolded and isotopically labeled GPCRs are still very limited. Here we report on the recent progress toward NMR structural studies of the melanocortin-2 and -4 receptors, two class A GPCRs which so far have not been reported to be incorporated into an amphipol environment. Making use of the established 7-TM protein bacteriorhodopsin (BR) we initially tested and optimized amphipol refolding conditions. Most promising conditions were transferred to the refolding of the two melanocortin receptors. Analytical-scale refolding experiments on the melanocortin-2 receptor show very similar behavior to the results obtained on BR. Using cell-free protein expression we could generate sufficient amounts of isotopically labeled bacteriorhodopsin as well as melanocortin-2 and -4 receptors for an initial NMR analysis. Upscaling of the amphipol refolding protocol to protein amounts needed for NMR structural studies was, however, not straightforward and impeded detailed NMR insights for the two GPCRs. While well-resolved and dispersed NMR spectra could only be obtained for bacteriorhodopsin, a comparison of NMR data recorded on the melanocortin-4 receptor in SDS and in an amphipol environment indicates that amphipol refolding induces larger structural modifications in the receptor.


Assuntos
Algoritmos , Cromatografia em Gel/métodos , Espectroscopia de Ressonância Magnética/métodos , Polímeros/química , Propilaminas/química , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/ultraestrutura , Sequência de Aminoácidos , Dados de Sequência Molecular , Conformação Proteica
15.
Peptides ; 49: 32-40, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23973967

RESUMO

Prion protein (PrP(C)) biosynthesis involves a multi-step process that includes translation and post-translational modifications. While PrP has been widely investigated, for the homolog Doppel (Dpl), limited knowledge is available. In this study, we focused on a vital step of eukaryotic protein biosynthesis: targeting by the signal recognition particle (SRP). Taking the ovine Dpl (OvDpl(1-30)) peptide as a template, we studied its behavior in two different hydrophobic environments using CD and NMR spectroscopy. In both trifluoroethanol (TFE) and dihexanoyl-sn-glycero-3-phosphatidylcholine (DHPC), the OvDpl(1-30) peptide revealed to fold in an alpha-helical conformation with a well-defined central region extending from residue Cys8 until Ser22. The NMR structure was subsequently included in a computational docking complex with the conserved M-domain of SRP54 protein (SRP54M), and further compared with the N-terminal structures of mouse Dpl and bovine PrP(C) proteins. This allowed the determination of (i) common predicted N-terminal/SRP54M polar contacts (Asp331, Gln335, Glu365 and Lys432) and (ii) different N-C orientations between prion and Dpl peptides at the SRP54M hydrophobic groove, that are in agreement with each peptide electrostatic potential. Together, these findings provide new insights into the biosynthesis of prion-like proteins. Besides they also show the role of protein conformational switches in signalization toward the endoplasmic membrane, a key event of major significance in the cell cycle. They are thus of general applicability to the study of the biological function of prion-like as well as other proteins.


Assuntos
Proteínas Ligadas por GPI/química , Príons/química , Sequência de Aminoácidos , Animais , Bovinos , Dicroísmo Circular , Camundongos , Micelas , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Ovinos , Eletricidade Estática
16.
Reprod Biol Endocrinol ; 11: 25, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23531155

RESUMO

BACKGROUND: The impact of prion proteins in the rules that dictate biological reproduction is still poorly understood. Likewise, the role of prnt gene, encoding the prion-like protein testis specific (Prt), in ram reproductive physiology remains largely unknown. In this study, we assessed the effect of Prt in ovine fertilization by using an anti-Prt antibody (APPA) in fertilization medium incubated with spermatozoa and oocytes. Moreover, a computational model was constructed to infer how the results obtained could be related to a hypothetical role for Prt in sperm-zona pellucida (ZP) binding. METHODS: Mature ovine oocytes were transferred to fertilization medium alone (control) or supplemented with APPA, or pre-immune serum (CSerum). Oocytes were inseminated with ovine spermatozoa and after 18 h, presumptive zygotes (n=142) were fixed to evaluate fertilization rates or transferred (n=374) for embryo culture until D6-7. Predicted ovine Prt tertiary structure was compared with data obtained by circular dichroism spectroscopy (CD) and a protein-protein computational docking model was estimated for a hypothetical Prt/ZP interaction. RESULTS: The fertilizing rate was lower (P=0.006) in APPA group (46.0+/-6.79%) when compared to control (78.5+/-7.47%) and CSerum (64.5+/-6.65%) groups. In addition, the cleavage rate was higher (P<0.0001) in control (44.1+/-4.15%) than in APPA group (19.7+/-4.22%). Prt CD spectroscopy showed a 22% alpha-helical structure in 30% (m/v) aqueous trifluoroethanol (TFE) and 17% alpha in 0.6% (m/v) TFE. The predominant alpha-helical secondary structure detected correlates with the predicted three dimensional structure for ovine Prt, which was subsequently used to test Prt/ZP docking. Computational analyses predicted a favorable Prt-binding activity towards ZP domains. CONCLUSIONS: Our data indicates that the presence of APPA reduces the number of fertilized oocytes and of cleaved embryos. Moreover, the CD analysis data reinforces the predicted ovine Prt trend towards an alpha-helical structure. Predicted protein-protein docking suggests a possible interaction between Prt and ZP, thus supporting an important role for Prt in ovine fertilization.


Assuntos
Anticorpos Monoclonais/farmacologia , Fertilização In Vitro/efeitos dos fármacos , Príons/metabolismo , Zona Pelúcida/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Dicroísmo Circular , Proteínas do Ovo/química , Proteínas do Ovo/genética , Proteínas do Ovo/metabolismo , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Feminino , Masculino , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Príons/química , Príons/imunologia , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Homologia de Sequência de Aminoácidos , Ovinos , Interações Espermatozoide-Óvulo/efeitos dos fármacos , Fatores de Tempo , Trifluoretanol/química , Trifluoretanol/farmacologia , Glicoproteínas da Zona Pelúcida
17.
Biochem J ; 451(2): 289-300, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23356867

RESUMO

Non-catalytic cellulosomal CBMs (carbohydrate-binding modules) are responsible for increasing the catalytic efficiency of cellulosic enzymes by selectively putting the substrate (a wide range of poly- and oligo-saccharides) and enzyme into close contact. In the present study we carried out an atomistic rationalization of the molecular determinants of ligand specificity for a family 11 CBM from thermophilic Clostridium thermocellum [CtCBM11 (C. thermocellum CBM11)], based on a NMR and molecular modelling approach. We have determined the NMR solution structure of CtCBM11 at 25°C and 50°C and derived information on the residues of the protein that are involved in ligand recognition and on the influence of the length of the saccharide chain on binding. We obtained models of the CtCBM11-cellohexaose and CtCBM11-cellotetraose complexes by docking in accordance with the NMR experimental data. Specific ligand-protein CH-π and Van der Waals interactions were found to be determinant for the stability of the complexes and for defining specificity. Using the order parameters derived from backbone dynamics analysis in the presence and absence of ligand and at 25°C and 50°C, we determined that the protein's backbone conformational entropy is slightly positive. This data in combination with the negative binding entropy calculated from ITC (isothermal titration calorimetry) studies supports a selection mechanism where a rigid protein selects a defined oligosaccharide conformation.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Metabolismo dos Carboidratos , Clostridium thermocellum/metabolismo , Oligossacarídeos/química , Proteínas de Bactérias/genética , Sítios de Ligação , Calorimetria , Celulose/análogos & derivados , Celulose/química , Celulose/metabolismo , Entropia , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oligossacarídeos/metabolismo , Conformação Proteica , Tetroses/química , Tetroses/metabolismo
18.
PLoS One ; 7(8): e42957, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22937002

RESUMO

A hallmark of prion diseases or transmissible spongiform encephalopaties is the conversion of the cellular prion protein (PrP(C)), expressed by the prion gene (prnp), into an abnormally folded isoform (PrP(Sc)) with amyloid-like features that causes scrapie in sheep among other diseases. prnp together with prnd (which encodes a prion-like protein designated as Doppel), and prnt (that encodes the prion protein testis specific--Prt) with sprn (shadow of prion protein gene, that encodes Shadoo or Sho) genes, constitute the "prion gene complex". Whereas a role for prnd in the proper functioning of male reproductive system has been confirmed, the function of prnt, a recently discovered prion family gene, comprises a conundrum leading to the assumption that ruminant prnt is a pseudogene with no protein expression. The main objective of the present study was to identify Prt localization in the ram reproductive system and simultaneously to elucidate if ovine prnt gene is transcribed into protein-coding RNA. Moreover, as Prt is a prnp-related protein, the amyloid propensity was also tested for ovine and caprine Prt. Recombinant Prt was used to immunize BALB/c mice, and the anti-Prt polyclonal antibody (APPA) immune response was evaluated by ELISA and Western Blot. When tested by indirect immunofluorescence, APPA showed high avidity to the ram sperm head apical ridge subdomain, before and after induced capacitation, but did not show the same behavior against goat spermatozoa, suggesting high antibody specificity against ovine-Prt. Prt was also found in the testis when assayed by immunohistochemistry during ram spermatogenesis, where spermatogonia, spermatocytes, spermatids and spermatozoa, stained positive. These observations strongly suggest ovine prnt to be a translated protein-coding gene, pointing to a role for Prt protein in the ram reproductive physiology. Besides, caprine Prt appears to exhibit a higher amyloid propensity than ovine Prt, mostly associated with its phenylalanine residue.


Assuntos
Príons/metabolismo , Pseudogenes/genética , Espermatozoides/metabolismo , Testículo/metabolismo , Animais , Western Blotting , Ensaio de Imunoadsorção Enzimática , Cabras , Masculino , Camundongos , Príons/genética
19.
Eur J Med Chem ; 54: 823-33, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22796043

RESUMO

The close structural similarity between the two cyclooxygenase (COXs) isoforms and the absence of selective inhibitors without side effects continues to stimulate the development of novel approaches towards selective anti-inflammatory drugs. In the present study a small library of new indolic compounds involving two different substitutions patterns at the indole scaffold was synthesized. In order to establish a relation between the spatial distribution of known functional groups related with inhibitory activity, two substitution patterns were explored: one with substituents at N-1, C-3, C-5 positions and another at C-2, C-3 and C5 positions. Accordingly, indole positions C-5, C-3 and N-1 were substituted with: sulfonamide or methylsulfone at C-5, p-halo-benzyl group at C-3, and an alkyl chain with a trifluoromethyl group at N-1. Alternatively, a p-halo-benzyl group was introduced at C-2, leaving the indolic nitrogen free. Inhibitory studies were performed and the activity results obtained against both COXs isoforms were rationalized based on docking and NMR studies. Docking studies show that dialkyation at C-2 and C-3 favors a binding with an orientation similar to that of the known selective inhibitor SC-558. From the tested compounds, this substitution pattern is correlated with the highest inhibitory activity and selectivity: 70% COX-2 inhibition at 50 µM, and low COX-1 inhibition (18 ± 9%). Additionally, Saturation Transfer Difference NMR experiments reveal different interaction patterns with both COXs isoforms that may be related with different orientations of the sulfonamide group in the binding pocket. Despite the moderated inhibitory activities found, this study represents an innovative approach towards COXs inhibitory activity rationalization and to the design of anti-inflammatory drugs.


Assuntos
Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/farmacologia , Indóis/síntese química , Indóis/farmacologia , Simulação de Acoplamento Molecular , Animais , Técnicas de Química Sintética , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Indóis/química , Indóis/metabolismo , Espectroscopia de Ressonância Magnética , Conformação Proteica
20.
Methods Enzymol ; 510: 395-415, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22608738

RESUMO

Cellulosomes are highly efficient nanomachines that play a fundamental role during the anaerobic deconstruction of complex plant cell wall carbohydrates. The assembly of these complex nanomachines results from the very tight binding of repetitive cohesin modules, located in a noncatalytic molecular scaffold, and dockerin domains located at the C-terminus of the enzyme components of the cellulosome. The number of enzymes found in a cellulosome varies but may reach more than 100 catalytic subunits if cellulosomes are further organized in polycellulosomes, through a second type of cohesin-dockerin interaction. Structural studies have revealed how the cohesin-dockerin interaction mediates cellulosome assembly and cell-surface attachment, while retaining the flexibility required to potentiate catalytic synergy within the complex. Methods that might be applied for the production, purification, and structure determination of cohesin-dockerin complexes are described here.


Assuntos
Proteínas de Ciclo Celular/genética , Celulossomas/enzimologia , Proteínas Cromossômicas não Histona/genética , Clonagem Molecular/efeitos dos fármacos , Clostridium thermocellum/enzimologia , Escherichia coli/genética , Complexos Multienzimáticos/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/isolamento & purificação , Proteínas de Ciclo Celular/metabolismo , Celulossomas/química , Celulossomas/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/isolamento & purificação , Proteínas Cromossômicas não Histona/metabolismo , Clostridium thermocellum/química , Clostridium thermocellum/genética , Cristalização/métodos , Cristalografia por Raios X/métodos , Modelos Moleculares , Complexos Multienzimáticos/química , Complexos Multienzimáticos/isolamento & purificação , Complexos Multienzimáticos/metabolismo , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...